skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ding, Dong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A redox-reversible BLFMN material demonstrates good performance and coking resistance as the fuel electrode in SOFCs. 
    more » « less
  2. Abstract Protonic ceramic electrochemical cells (PCECs) represent a promising class of solid‐state energy conversion devices capable of high‐efficiency hydrogen production and power generation. However, the practical deployment of planar PCECs is fundamentally constrained by severe structural deformation and mechanical failure during fabrication, stemming from asymmetric shrinkage between the thin electrolyte and the thick NiO‐based support layer. In this work, a functionally integrated, symmetry‐engineered double‐sided electrolyte (DE) design is unveiled, which not only suppresses thermally induced curvature but also unlocks significant gains in electrochemical performance and stability. This architecture intrinsically balances shrinkage dynamics across the cell bilaterally, enabling the fabrication of ultra‐flat 5 × 5 cm2cells with sub‐100 µm thickness variation. A numerical solid mechanics simulation is introduced to investigate and interpret this achievement. Beyond structural advantages, the DE configuration enhances the cell operational stability, delivering a low open‐circuit voltage degradation of 9.5 mV/100 h across 80 thermal cycles. This work establishes a compelling paradigm wherein architectural symmetry directly translates to both mechanical fidelity and functional enhancement, offering a promising route toward PCECs scale‐up. 
    more » « less
    Free, publicly-accessible full text available October 28, 2026
  3. Abstract Solid-oxide fuel cells (SOFCs) offer great promise for producing electricity using a wide variety of fuels such as natural gas, coal gas and gasified carbonaceous solids; however, conventional nickel-based anodes face great challenges due to contaminants in readily available fuels, especially sulphur-containing compounds. Thus, the development of new anode materials that can suppress sulphur poisoning is crucial to the realization of fuel-flexible and cost-effective SOFCs. In this work, La0.1Sr1.9Fe1.4Ni0.1Mo0.5O6–δ (LSFNM) and Pr0.1Sr1.9Fe1.4Ni0.1Mo0.5O6–δ (PSFNM) materials have been synthesized using a sol-gel method in air and investigated as anode materials for SOFCs. Metallic nanoparticle-decorated ceramic anodes were obtained by the reduction of LSFNM and PSFNM in H2 at 850°C, forming a Ruddlesden–Popper oxide with exsolved FeNi3 bimetallic nanoparticles. The electrochemical performance of the Sr2Fe1.4Ni0.1Mo0.5O6–δ ceramic anode was greatly enhanced by La doping of A-sites, resulting in a 44% decrease in the polarization resistance in reducing atmosphere. The maximum power densities of Sr- and Mg-doped LaGaO3 (LSGM) (300 μm) electrolyte-supported single cells with LSFNM as the anode reached 1.371 W cm −2 in H2 and 1.306 W cm–2 in 50 ppm H2S–H2 at 850°C. Meanwhile, PSFNM showed improved sulphur tolerance, which could be fully recovered after six cycles from H2 to 50 ppm H2S–H2 operation. This study indicates that LSFNM and PSFNM are promising high-performance anodes for SOFCs. 
    more » « less
  4. null (Ed.)
    The electrochemical CO 2 reduction reaction (CO 2 RR) to form highly valued chemicals is a sustainable solution to address the environmental issues caused by excessive CO 2 emissions. Generally, it is challenging to achieve high efficiency and selectivity simultaneously in the CO 2 RR due to multi-proton/electron transfer processes and complex reaction intermediates. Among the studied formulations, bimetallic catalysts have attracted significant attention with promising activity, selectivity, and stability. Engineering the atomic arrangement of bimetallic nanocatalysts is a promising strategy for the rational design of structures (intermetallic, core/shell, and phase-separated structures) to improve catalytic performance. This review summarizes the recent advances, challenges, and opportunities in developing bimetallic catalysts for the CO 2 RR. In particular, we firstly introduce the possible reaction pathways on bimetallic catalysts concerning the geometric and electronic properties of intermetallic, core/shell, and phase-separated structures at the atomic level. Then, we critically examine recent advances in crystalline structure engineering for bimetallic catalysts, aiming to establish the correlations between structures and catalytic properties. Finally, we provide a perspective on future research directions, emphasizing current challenges and opportunities. 
    more » « less